(sinx+cosecx)2+(cosx+secx)2
=sin2x+cosec2x+2sinx×cosecx+cos2x+sec2x+2cosxsecx
=sin2x+cos2x+cosec2x+sec2x+2sinx×1sinx+2cosx×1cosx
=1+1+cot2x+1+tan2x+4
=7+tan2x+cot2x
LHS = RHS
limx→π4√2−cos x−sin x(π4−x)2
You are given cos x=1−x22!+x44!−x66!......;
sin x=x−x33!+x55!−x77!......
tan x=x+x33+2.x515......
Find the value of limx→0x cosx+sinxx2+tanx