wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

prove lhs equals rhs :cos theta *cos theta/2-cos 3theta*cos 9theta/2=sin 7theta/2*sin 4theta

Open in App
Solution

Dear Student,Prove that: cosθcosθ2-cos3θcos9θ2=sin4θsin7θ2LHS:cosθcosθ2-cos3θcos9θ2=[cos(θ+θ2)+cos(θ-θ2)2]-[cos(9θ2+3θ)+cos(9θ2-3θ)2] { Because, cosxcosy=cos(x+y)+cos(x-y)2}=12×[cos3θ2+cosθ2-(cos15θ2+cos3θ2)]=12×[cos3θ2+cosθ2-cos15θ2-cos3θ2]=12×[cosθ2-cos15θ2]=-12×[cos15θ2-cosθ2]=-12×[-2sin(15θ2+θ22)sin(15θ2-θ22)=sin(8θ2)sin(7θ2)=sin4θsin7θ2=RHS, Hence ProvedRegards.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Derivative of Simple Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon