Let
f(x)=ln(1+x)−tan−1x1+x
Now
f′(x)=11+x−1(1+x2)(1+x)+tan−1x(1+x)2
Now
f′(x)>0 implies
11+x−1(1+x2)(1+x)>−tan−1x(1+x)2
x2(1+x)(1+x2)>−tan−1x(1+x)2
11+x[x2x2+1+tan−1(x)1+x]>0
Now for x>0, f'(x) is positive.
Hence f(x)>0 for x>0.
Or
ln(1+x)−tan−1(x)1+x>0 for x>0
ln(1+x)>tan−1(x)1+x for x>0.