=n!(n−r)!r!+n!(n−r+1)!(r−1)!
=n![1(n−r)!r!+1(n−r+1)!(r−1)!]
=n![1(n−r)!r(r−1)!+1(n−r+1)!(r−1)!]
=n!(r−1)![1(n−r)!r+1(n−r+1)!]
=n!(r−1)![1r(n−r)!+1(n−r+1)(n−r)!]
=n!(r−1)!(n−r)![1r+1(n−r+1)]
=n!(r−1)!(n−r)![n−r+1+rr(n−r+1)]
=n!(r−1)!(n−r)![n+1r(n−r+1)]
=(n+1)n!(n−r+1)(r−1)!r(n−r)!
=(n+1)!(n−r+1)!r!
=n+1Cr