wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

ProvethatintriangleABC:a3sin(BC)+b3sin(ca)+c3sin(AB)=0

Open in App
Solution

Given the equation

LHS

a3sin(BC)+b3sin(CA)+c3sin(AB)=0

we know that

sinAa=sinBb=sinCc=K (let)

cosA=a2+c2a22bc

cosB=a2+c2b22ac

b2+a2c22ba

so,

a3sin(BC)=a3[sinBcosCcosBsinC]

=a3[kb×b2+a2c22baa2+c2b22ac×kc]

=ka3×b2+a2c2a2c2+b22a

=ka2(b2c2)

similarly,

b3sin(CA)=kb2(c2a2)

C3sin(AB)=kc2(a2b2)

now, adding all we get,

=k[a2(b2c2)+b2(c2a2)+c2(a2b2)]

=k[a2b2a2c2+b2C2a2b2+c2a2c2b2]
= 0
hence, the RHS is proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon