wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove sin1513+cos135=tan16316

Open in App
Solution

Let a=sin1513,b=cos135

sina=513,cosb=35

We know that cos2a=1sin2a

cosa=1sin2a

=1(513)2

=125169

=16925169

=144169

=1213

We know that sin2b=1cos2b

sinb=1cos2b

=1(35)2

=1925

=25925

=1625

=45

Let tana=sinacosa=5131213=513×1312=512

Let tanb=sinbcosb=4535=45×53=43

Now, we know that tan(a+b)=tana+tanb1tanatanb

=512+431512×43

=15+483612036

=6336362036

=63361636

=6316

Hence,tan(a+b)=6316

a+b=tan1(6316)

Putting the values of a and b

sin1513+cos135=tan1(6316)

Hence L.H.S=R.H.S

Hence proved.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios of Allied Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon