=sin20sin40×√32×sin80
=√32×22sin20sin40sin80
=√34×(2sin20sin40)sin80
=√34[cos(20−40)−cos(20+40)]sin80
=√34[cos20−cos60]sin80
=√34[cos20−12]sin80
=√34[cos20sin80−sin802]
=√34[2sin80cos202−sin802]
=√34[sin(80+20)+sin(80−20)2−sin802]
=√34[sin100+sin602−sin802]
=√34[sin100−sin802+√34]
=√34[2cos(100+802)sin(100−802)2+√34]
=√34[cos90sin102+sqrt34]
=√34[0×sin102+√34]
=√34×√34
=316