1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard IX
Mathematics
Use of Trigonometric Table
Prove: sin 5...
Question
Prove:
sin
5
θ
=
16
sin
5
θ
−
20
sin
3
θ
+
5
sin
θ
Open in App
Solution
s
i
n
5
A
=
s
i
n
(
3
A
+
2
A
)
=
s
i
n
3
A
c
o
s
2
A
+
c
o
s
3
A
s
i
n
2
A
=
(
3
s
i
n
A
−
4
s
i
n
³
A
)
(
1
–
2
s
i
n
²
A
)
+
c
o
s
(
2
A
+
A
)
s
i
n
2
A
=
3
s
i
n
A
−
10
s
i
n
³
A
+
8
s
i
n
5
A
+
[
c
o
s
2
A
c
o
s
A
−
s
i
n
2
A
s
i
n
A
]
s
i
n
2
A
=
3
s
i
n
A
−
10
s
i
n
³
A
+
8
s
i
n
5
A
+
[
(
1
–
2
s
i
n
²
A
)
c
o
s
A
−
2
s
i
n
²
A
c
o
s
A
]
2
s
i
n
A
c
o
s
A
=
3
s
i
n
A
−
10
s
i
n
³
A
+
8
s
i
n
5
A
+
[
c
o
s
A
−
4
s
i
n
²
A
c
o
s
A
]
2
s
i
n
A
c
o
s
A
=
3
s
i
n
A
−
10
s
i
n
³
A
+
8
s
i
n
5
A
+
2
s
i
n
A
c
o
s
²
A
−
8
s
i
n
³
A
c
o
s
²
A
=
3
s
i
n
A
−
10
s
i
n
³
A
+
8
s
i
n
5
A
+
2
s
i
n
A
(
1
−
s
i
n
²
A
)
−
8
s
i
n
³
A
(
1
−
s
i
n
²
A
)
=
3
s
i
n
A
−
10
s
i
n
³
A
+
8
s
i
n
5
A
+
2
s
i
n
A
−
2
s
i
n
³
A
−
8
s
i
n
³
A
+
8
s
i
n
5
A
=
5
s
i
n
A
−
20
s
i
n
³
A
+
16
s
i
n
5
A
[Proved]
Suggest Corrections
0
Similar questions
Q.
Prove that following identities:
s
i
n
5
θ
=
5
s
i
n
θ
−
20
s
i
n
3
θ
+
16
s
i
n
5
θ
Q.
Prove that
s
i
n
7
θ
−
s
i
n
5
θ
c
o
s
7
θ
+
c
o
s
5
θ
=
t
a
n
6
θ
Q.
Prove that
(
sin
5
θ
)
(
sin
θ
)
=
16
cos
4
θ
−
12
cos
2
θ
+
1
Q.
Prove the following trigonometric identities.
If 3 sin θ + 5 cos θ = 5, prove that 5 sin θ − 3 cos θ = ± 3.