wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove:
sin5θ=16sin5θ20sin3θ+5sinθ

Open in App
Solution

sin5A=sin(3A+2A)
=sin3Acos2A+cos3Asin2A
=(3sinA4sin³A)(12sin²A)+cos(2A+A)sin2A
=3sinA10sin³A+8sin5A+[cos2AcosAsin2AsinA]sin2A
=3sinA10sin³A+8sin5A+[(12sin²A)cosA2sin²AcosA]2sinAcosA
=3sinA10sin³A+8sin5A+[cosA4sin²AcosA]2sinAcosA
=3sinA10sin³A+8sin5A+2sinAcos²A8sin³Acos²A
=3sinA10sin³A+8sin5A+2sinA(1sin²A)8sin³A(1sin²A)
=3sinA10sin³A+8sin5A+2sinA2sin³A8sin³A+8sin5A
=5sinA20sin³A+16sin5A[Proved]

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Adaptive Q10
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon