wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove : (sinA+cosecA)2+(cosA+secA)2=7+tan2A+cot2A

Open in App
Solution

(sinA+cscA)2+(cosA+secA)2=7+tan2A+cot2A

LHS: (sinA+1sinA)2+(cosA+1cosA)2[cscA=1sinA,secA=1cosA]

=(sin2A+1)2sin2A+(1+cos2A)cos2A=cos2A(1+sin2A)+sin2A(1+cos2A)2sin2A.cos2A

=sin2A+sin4A.cos2A+2sin2A.cos2A+sin2A+cos4A.sin2A+2sin2Acos2Asin2A.cos2A

=(cos2A+sin2A)+4sin2A.cos2A+sin2A.cos2A(sin2A+cos2A)sin2A.cos2A

=1+4sin2A.cos2A+sin2A.cos2Asin2A.cos2A=1+5sin2Acos2Asin2A.cos2A=LHS

RHS: 7+tan2A+cot2A=7+sin2Acos2A+cos2Asin2A

=7sin2A.cos2A+sin4A+cos4Acos2A.sin2A=5sin2A.cos2A+(sin2A+cos2A)2sin2A.cos2A

=1+5sin2A.cos2Asin2A.cos2A=R.H.S

Hence LHS=RHS

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Principal Solution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon