Solving the LHS of (sinA+cscA)2+(cosA+secA)2=7tan2A+cot2A
(sinA+cscA)2+(cos2A+sec2A)2=sin2A+csc2A+2sinAcscA+cos2A+sec2A+2cosAsecA=sin2A+cos2A+csc2A+sec2A+2sinA×1sinA+2cosA×1cosA
=1+(1+cot2A)+(1+tan2A)+2+2
=7+tan2A+cot2A
=RHS