1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Principal Solution of Trigonometric Equation
Prove : sin...
Question
Prove :
sin
θ
sin
(
90
∘
−
θ
)
−
cos
θ
cos
(
90
∘
−
θ
)
=
0.
Open in App
Solution
We know;
sin
(
90
∘
−
θ
)
=
cos
θ
a
n
d
cos
(
90
∘
−
θ
)
=
sin
θ
L.H.S
=
sin
θ
sin
(
90
∘
−
θ
)
−
cos
θ
cos
(
90
∘
−
θ
)
=
sin
θ
cos
θ
−
cos
θ
sin
θ
=
0
=R.H.S
∵
L
.
H
.
S
=
R
.
H
.
S
sin
θ
sin
(
90
∘
−
θ
)
−
cos
θ
cos
(
90
∘
−
θ
)
=
0
Hence proved
Suggest Corrections
0
Similar questions
Q.
Prove the following :
(i) sin θ sin (90° − θ) − cos θ cos (90° − θ) = 0
(ii)
cos
90
°
-
θ
sec
90
°
-
θ
tan
θ
cosec
90
°
-
θ
sin
90
°
-
θ
cot
90
°
-
θ
+
tan
90
°
-
θ
cot
θ
=
2
(iii)
tan
90
°
-
A
cot
A
cosec
2
A
-
cos
2
A
=
0
(iv)
cos
90
°
-
A
sin
90
°
-
A
tan
90
°
-
A
=
sin
2
A
(v) sin (50° − θ) − cos (40° − θ) + tan 1° tan 10° tan 20° tan 70° tan 80° tan 89° = 1