wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove:
secθ1secθ+1+secθ+1secθ1=2cosecθ

Open in App
Solution

LHS=secθ1secθ+1+secθ+1secθ1=    1cosθ11cosθ+1+    1cosθ+11cosθ1(secθ=1cosθ)=1cosθ1+cosθ+1+cosθ1cosθ=1cosθ1+cosθ×1cosθ1cosθ+1+cosθ1cosθ×1+cosθ1+cosθ=(1cosθ)21cos2θ+(1+cosθ)21cos2θ=(1cosθ)2sin2θ+(1+cosθ)2sin2θ(sin2θ=1cos2θ)=1cosθsinθ+1+cosθsinθ=2sinθ=2cosecθ(cosecθ=1sinθ)

flag
Suggest Corrections
thumbs-up
3
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Multiple and Sub Multiple Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon