1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Existence of Limit
Prove tan-1...
Question
Prove
tan
−
1
(
3
a
2
x
−
x
3
a
3
−
3
a
x
3
)
,
a
>
0
,
−
a
√
2
≤
x
≤
a
√
3
Open in App
Solution
y
=
tan
−
1
(
3
a
2
x
−
x
3
a
3
−
3
x
2
)
p
u
t
t
i
n
g
x
=
a
tan
θ
θ
=
tan
−
1
x
a
⇒
y
=
tan
−
1
[
3
a
2
tan
θ
−
a
3
tan
3
θ
a
3
−
3
a
3
tan
2
θ
]
⇒
y
=
tan
−
1
[
3
tan
θ
−
tan
3
θ
1
−
3
tan
2
θ
]
⇒
y
=
tan
−
1
[
tan
3
θ
]
⇒
y
=
3
θ
⇒
y
=
3
tan
−
1
x
a
Suggest Corrections
0
Similar questions
Q.
Differentiate
tan
−
1
(
3
a
2
x
−
x
3
a
3
−
3
a
x
2
)
,
−
1
√
3
<
x
a
<
1
√
3
Q.
Write the function in the simplest form:
tan
−
1
(
3
a
2
x
−
x
3
a
3
−
3
a
x
2
)
,
a
>
0
;
−
a
√
3
≤
x
≤
a
√
3
Q.
Write the given trigonometric expression in its simplest form.
tan
−
1
(
3
a
2
x
−
x
3
a
3
−
3
a
x
2
)
,
a
>
0
;
−
a
√
3
≤
x
≤
a
√
3
.
Q.
t
a
n
−
1
(
3
a
2
x
−
x
3
a
3
−
3
a
x
2
)
,
a
>
0
;
−
a
√
3
≤
x
≤
a
√
3
Q.
Evaluate:
tan
−
1
(
3
a
2
x
−
x
3
a
3
−
3
a
x
2
)
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Introduction to Limits
MATHEMATICS
Watch in App
Explore more
Existence of Limit
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app