Prove tan(3θ)=(3tanθ-tan3θ)(1-3tan2θ)
Prove that : tan(3θ)=(3tanθ-tan3θ)(1-3tan2θ)
Use formula:
tan(A+B)=tanA+tanB1-tanA×tanB
Solve the L.H.S part.
tan(3θ)=tan(θ+2θ)⇒=tanθ+tan2θ1-tanθ×tan2θ⇒=tanθ+tan(θ+θ)1-tanθ×tan(θ+θ)∵tan2θ=tan(θ+θ)⇒=tanθ+tanθ+tanθ1-tan2θ1-tanθ(tanθ+tanθ)1-tan2θ⇒=tanθ(1-tan2θ)+tanθ+tanθ1-tan2θ(1-tan2θ)-tanθ(tanθ+tanθ)1-tan2θ⇒=tanθ-tan3θ+tanθ+tanθ1-tan2θ1-tan2θ-tan2θ-tan2θ1-tan2θ⇒=3tanθ-tan3θ1-tan2θ1-3tan2θ1-tan2θ⇒=3tanθ-tan3θ1-tan2θ×1-tan2θ1-3tan2θ⇒=3tanθ-tan3θ1-3tan2θ
Hence, the L.H.S= R.H.S.