wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove tan(3θ)=(3tanθ-tan3θ)(1-3tan2θ)


Open in App
Solution

Prove that : tan(3θ)=(3tanθ-tan3θ)(1-3tan2θ)

Use formula:

tan(A+B)=tanA+tanB1-tanA×tanB

Solve the L.H.S part.

tan(3θ)=tan(θ+2θ)=tanθ+tan2θ1-tanθ×tan2θ=tanθ+tan(θ+θ)1-tanθ×tan(θ+θ)tan2θ=tan(θ+θ)=tanθ+tanθ+tanθ1-tan2θ1-tanθ(tanθ+tanθ)1-tan2θ=tanθ(1-tan2θ)+tanθ+tanθ1-tan2θ(1-tan2θ)-tanθ(tanθ+tanθ)1-tan2θ=tanθ-tan3θ+tanθ+tanθ1-tan2θ1-tan2θ-tan2θ-tan2θ1-tan2θ=3tanθ-tan3θ1-tan2θ1-3tan2θ1-tan2θ=3tanθ-tan3θ1-tan2θ×1-tan2θ1-3tan2θ=3tanθ-tan3θ1-3tan2θ

Hence, the L.H.S= R.H.S.


flag
Suggest Corrections
thumbs-up
3
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Adjoint and Inverse of a Matrix
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon