Prove tan9°-tan27°-tan63°+tan81°=4
Determine the provingtan9°-tan27°-tan63°+tan81°=4
Solve the L.H.S part:
tan9°–tan27°–tan63°+tan81°=tan81+tan9–(tan63+tan27)=cot9+tan9–(cot27+tan27)[∴tan(90–x)=cotx]=(cos9sin9)+(sin9cos9)–[(cos27sin27)+(sin27cos27)][∵cotA=cosAsinAandtanA=sinAcosA]=(cos29+sin29)sin9cos9–[(cos227+sin227)sin27cos27][∵sin2A+cos2A=1]=1sin9cos9–1sin27cos27[∵sin2A=2sinAcosA]=2sin18–2sin54[∵sin2(9)=sin18andsin2(27)=sin54]=2(sin54–sin18)sin54.sin18[∵sinC–sinD=2cosC+D2.sin(C–D)2]=2(2cos36.sin18)cos36.sin18=4cos36.sin18cos36.sin18=4
Hence, the L.H.S= R.H.S.
tan(81°)-tan(63°)-tan(27°)+tan(9°) equals