wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove tan9°-tan27°-tan63°+tan81°=4


Open in App
Solution

Determine the provingtan9°-tan27°-tan63°+tan81°=4

Solve the L.H.S part:

tan9°tan27°tan63°+tan81°=tan81+tan9(tan63+tan27)=cot9+tan9(cot27+tan27)[tan(90x)=cotx]=(cos9sin9)+(sin9cos9)[(cos27sin27)+(sin27cos27)][cotA=cosAsinAandtanA=sinAcosA]=(cos29+sin29)sin9cos9[(cos227+sin227)sin27cos27][sin2A+cos2A=1]=1sin9cos91sin27cos27[sin2A=2sinAcosA]=2sin182sin54[sin2(9)=sin18andsin2(27)=sin54]=2(sin54sin18)sin54.sin18[sinCsinD=2cosC+D2.sin(CD)2]=2(2cos36.sin18)cos36.sin18=4cos36.sin18cos36.sin18=4

Hence, the L.H.S= R.H.S.


flag
Suggest Corrections
thumbs-up
28
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon