Prove that 0 !=1.
We have nPr=n !(n−r) ! ...(i)
⇒ nPn=n !0 ! [putting r = n in (i) ]
⇒ n!=n !0 ! [∵ nPn=n !]
⇒ 0 !=n !n !=1
Hence, 0 !=1.
Remark Thus, we have "Pr=n !(n−r) !, where 0≤r≤n.
If sin αsinβcosβ+1=0, prove that 1 + cot αtanβ=0.