A(0,5),B(−2,−2),C(5,0),D(7,7) be vertices of quadrilateral.
AB=√(x1−x2)2+(y1−y2)2
=√(0+2)2+(5+2)2
=√4+49=√53
BC=√(−2−5)2+(−2−0)2B(−2,2);C(5,0)
=√49+4=√53
CD=√(5−7)2+(0−7)2C(5,0);D(7,7)
√4+49=√53
AD=√(0−7)2+(5−7)2A(0,5);D(7,7)
=√49+4=√53
AC=√(0−5)2+(5−0)2A(0,5);C(5,0)
=√25+25=√50
BD=√(−2−7)2+(−2−7)2B(−2,−2);D(7,7)
=√81+81=√162
AB=BC=CD=DA and AC≠BD
The given point form a Rhombus.