P(n):12+22+...+n2>nk3P(1):1>1k3Clearly for k=1,1>13For k=2,P(2):1+22>2k3⟹5>2k3For k=1,P(2):5>23For k=2,P(2):5>43For k=3,P(2):5>83For k=4,P(2):5≯163For k=1,P(3):1+4+9>33For k=2,P(3):14>93For k=3,P(3):14>273For k=4,P(4):5>343P(2) is satisfied for k=1,2,3∴k=3, where k∈Z+Now we want to verify the value of k∀ positive integral values of n using principle of mathematical induction.Verification: Let P(m)be true for n=m, thenP(m):12+22+...+m2>m33We shall now prove that P(m+1) is true, i.e.,12+22+...+m2+(m+1)2>(m+1)33⟹P(m+1) is trueNow P(m) is true.12+22+...+m2+(m+1)2>(m)33+(m+1)2⟹12+22+...+m2+(m+1)2>13(m3+3m2+6m+3)⟹12+22+...+m2+(m+1)2>13[(m3+3m2+3m+1)+(3m+2)]⟹12+22+...+m2+(m+1)2>13[(m+1)3+(3m+2)]>(m+1)33Therefore, P(m) is true ⟹P(m+1) is true