wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that 12+22+...+n2>n33,nN

Open in App
Solution

P(n):12+22+...+n2>nk3P(1):1>1k3Clearly for k=1,1>13For k=2,P(2):1+22>2k35>2k3For k=1,P(2):5>23For k=2,P(2):5>43For k=3,P(2):5>83For k=4,P(2):5163For k=1,P(3):1+4+9>33For k=2,P(3):14>93For k=3,P(3):14>273For k=4,P(4):5>343P(2) is satisfied for k=1,2,3k=3, where kZ+Now we want to verify the value of k positive integral values of n using principle of mathematical induction.Verification: Let P(m)be true for n=m, thenP(m):12+22+...+m2>m33We shall now prove that P(m+1) is true, i.e.,12+22+...+m2+(m+1)2>(m+1)33P(m+1) is trueNow P(m) is true.12+22+...+m2+(m+1)2>(m)33+(m+1)212+22+...+m2+(m+1)2>13(m3+3m2+6m+3)12+22+...+m2+(m+1)2>13[(m3+3m2+3m+1)+(3m+2)]12+22+...+m2+(m+1)2>13[(m+1)3+(3m+2)]>(m+1)33Therefore, P(m) is true P(m+1) is true

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Remainder Theorem
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon