1+2+22+...+2n=2n+1−1 for all nϵN.
Prove that 12tan(x2)+14tan(x4)+...+12ntan(x2n)=12ncot+(x2n)−cot x for all nϵN and 0<x<x2.
Prove that (2n)!22n(n!)2≤1√3n+1 for all nϵN.