wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that 1+cos56+cos58cos66=4cos28cos29sin33.

Open in App
Solution

Simplifying the LHS of 1+cos56+cos58cos66=4cos28cos29sin33.

1+cos56+cos58cos66=(1cos66)+(cos56+cos58)

=2sin2662+(2cos56+582cos56582)

=2sin233+2cos57cos1

=2sin233+2cos(9033)cos(9089)

=2sin233+2sin33sin89

=2sin33(sin33+sin89)

=2sin33(2sin33+892cos33892)

=4sin33sin61cos28

=4sin33sin(9029)cos28

=4cos28cos29sin33

=RHS


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Inverse Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon