wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that 1cosA+cosBcos(A+B)1+cosAcosBcos(A+B)=tanA2cot(B2).

Open in App
Solution

Consider, LHS=1cosA+cosBcos(A+B)1+cosAcosBcos(A+B)
=2sin2(A2)+2sin(A2)sin(A2+B)2cos2(A2)2cos(A2)cos(A2+B) [Since, cosCcosD=2sin(DC)2sin(D+C)2]
=2sin(A2)2cos(A2)sin(A2)+sin(A2+B)cos(A2)cos(A2+B)
=tan(A2)2sin(A+B2)cos(B2)2sin(A+B2)sin(B2)
[Since, sinC+sinD=2sin(C+D)2sin(CD)2]
=tan(A2)cot(B2)
= RHS
Therefore, LHS=RHS
Hence, 1cosA+cosBcos(A+B)1+cosAcosBcos(A+B)=tanA2cot(B2)


flag
Suggest Corrections
thumbs-up
126
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Some Functions and Their Graphs
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon