Prove that 1−cosA+cosB−cos(A+B)1+cosA−cosB−cos(A+B)=tanA2cot(B2).
Consider, LHS=1−cosA+cosB−cos(A+B)1+cosA−cosB−cos(A+B)
=2sin2(A2)+2sin(A2)sin(A2+B)2cos2(A2)−2cos(A2)cos(A2+B) [Since, cosC−cosD=2sin(D−C)2sin(D+C)2]
=2sin(A2)2cos(A2)⎛⎝sin(A2)+sin(A2+B)cos(A2)−cos(A2+B)⎞⎠
=tan(A2)⎛⎝2sin(A+B2)cos(B2)2sin(A+B2)sin(B2)⎞⎠
[Since, sinC+sinD=2sin(C+D)2sin(C−D)2]
=tan(A2)cot(B2)
= RHS
Therefore, LHS=RHS
Hence, 1−cosA+cosB−cos(A+B)1+cosA−cosB−cos(A+B)=tanA2cot(B2)