Prove that 1+cota-coseca1+tana+seca=2
In 1+cota-coseca1+tana+seca=2,
L.H.S=1+cota-coseca1+tana+seca
=1+cosasina-1sina1+sinacosa+1cosa………(As, cotθ=cosθsinθ,tanθ=sinθcosθ,cosecθ=1sinθ,secθ=1cosθ)
=sina+cosasina-1sinacosa+sinacosa+1cosa
=sina+cosa-1sinacosa+sina+1cosa
=sina+cosa2-12sina.cosa…………………………….(a+ba-b=a2-b2)
=sin2a+2sinacosa+cos2a-1sina.cosa
=sin2a+cos2a+2sinacosa-1sina.cosa
=1+2sinacosa-1sina.cosa………………………….(sin2θ+cos2θ=1)
=2sinacosasina.cosa
=2
=R.H.S.
Hence, it is proved that 1+cota-coseca1+tana+seca=2
Prove that : tanA−tanBcotB−cotA=tanBcotA
Prove that Cot A -1 / 2- sec2 A = cot A/ 1+tan A
Prove that sinA/(cotA+cosecA)=2+sinA/(cotA-cosecA)