wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that 1+cota-coseca1+tana+seca=2


Open in App
Solution

In 1+cota-coseca1+tana+seca=2,

L.H.S=1+cota-coseca1+tana+seca

=1+cosasina-1sina1+sinacosa+1cosa………(As, cotθ=cosθsinθ,tanθ=sinθcosθ,cosecθ=1sinθ,secθ=1cosθ)

=sina+cosasina-1sinacosa+sinacosa+1cosa

=sina+cosa-1sinacosa+sina+1cosa

=sina+cosa2-12sina.cosa…………………………….(a+ba-b=a2-b2)

=sin2a+2sinacosa+cos2a-1sina.cosa

=sin2a+cos2a+2sinacosa-1sina.cosa

=1+2sinacosa-1sina.cosa………………………….(sin2θ+cos2θ=1)

=2sinacosasina.cosa

=2

=R.H.S.

Hence, it is proved that 1+cota-coseca1+tana+seca=2


flag
Suggest Corrections
thumbs-up
31
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Euler's Representation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon