prove that ( 1 + cot a - cosec a ) ( 1 + tan a + sec a) = 2
(1 + cot A - cosec A ) (1 + tan A + sec A ) = 2
L.H.S. = (1 + cos A/sin A - 1/sin A ) (1 + sin A/cos A + 1 / cos A ) { CONVERTING }
L.H.S. = (sin A + cos A - 1 / sin A ) (cos A + sin A +1 / cos A )
L.H.S. = (sin A + cos A )² - (1)² / sin Acos A { MULTIPLYING USING IDENTITY }
L.H.S. = (sin²A + cos²A) + 2sin Acos A - 1 / sin Acos A
L.H.S. = 1 + 2sin Acos A -1 / sin Acos A
L.H.S. = 2sin Acos A / sin Acos A
L.H.S. = 2
Hence, L.H.S = R.H.S