1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard X
Mathematics
Trigonometric Identity- 1
Prove that : ...
Question
Prove that :
(
1
+
cot
A
+
tan
A
)
(
sin
A
−
cos
A
)
=
sin
A
tan
A
−
cot
A
cos
A
.
Open in App
Solution
Let
L
.
H
.
S
=
(
1
+
c
o
t
A
+
t
a
n
A
)
(
s
i
n
A
−
c
o
s
A
)
=
(
1
+
cos
A
sin
A
+
sin
A
cos
A
)
(
sin
A
−
cos
A
)
=
(
sin
A
cos
A
+
cos
2
A
+
sin
2
A
sin
A
cos
A
)
(
sin
A
−
cos
A
)
=
(
1
+
sin
A
cos
A
)
(
sin
A
−
cos
A
sin
A
cos
A
)
Now,
R
.
H
.
S
=
sin
A
tan
A
−
cot
A
cos
A
=
sin
A
sin
A
cos
A
−
cos
A
sin
A
cos
A
=
sin
2
A
cos
A
−
cos
2
A
sin
A
=
sin
3
A
−
cos
3
A
sin
A
cos
A
=
(
sin
A
−
cos
A
)
sin
A
cos
A
(
sin
2
A
+
cos
2
A
+
sin
A
cos
A
)
=
(
1
+
sin
A
cos
A
)
(
sin
A
−
cos
A
)
sin
A
cos
A
Hence,
L
.
H
.
S
=
R
.
H
.
S
proved
Suggest Corrections
0
Similar questions
Q.
(1 + cot A + tan A) (sin A – cos A) = sin A tan A – cot A cos A
Q.
Prove the following trigonometric identities.
1
+
cot
A
+
tan
A
sin
A
-
cos
A
=
sec
A
cosec
2
A
-
cosec
A
sec
2
A
=
sin
A
tan
A
-
cot
A
cos
A