wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

prove that 1 + sec 20 = cot 40 cot 30

Open in App
Solution

To start with, cot(70) = cot(40 + 30) = (cot(40)*cot(30) - 1) / (cot(40) + cot(30)), so

cot(40)*cot(30) = cot(70)*(cot(40) + cot(30)) + 1.

But cot(70) = tan(20) = sin(20)*sec(20), so if we can show that

sin(20) * (cot(40) + cot(30)) = 1, then the proof will be complete.

So, cot(40) + cot(30) = cos(40)/sin(40) + cos(30)/sin(30) =

(cos(40)sin(30) + sin(40)cos(30)) / (sin(40)*sin(30)) =

sin(70) / ((1/2)*sin(40)) = cos(20) / (1/2)*2*sin(20)*cos(20)) = 1 / sin(20),

and so sin(20) * (cot(40) + cot(30)) = 1 as desired.

flag
Suggest Corrections
thumbs-up
6
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Functions in a Right Angled Triangle
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon