wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that 1(secθ-tanθ)-1cosθ=1cosθ-1(secθ+tanθ).

Open in App
Solution

1(secθ-tanθ)-1cosθ=1cosθ-1(secθ+tanθ)

LHS= 1secθtanθ1cosθ=(secθ+tanθ)(secθtanθ)(secθ+tanθ)secθ Multipying the numerator and denominator by (secθ+tanθ) =secθ+tanθsec2θtan2θsecθ=secθ+tanθsecθ [sec2θtan2θ=1]=tanθRHS=1cosθ1secθ+tanθ=secθ(secθtanθ)sec2θtan2θ Multipying the numerator and denomenator by (secθtanθ) =secθ+tanθsecθ [sec2θtan2θ=1]=tanθLHS=RHSHence Proved

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Range of Trigonometric Ratios from 0 to 90
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon