Prove that (1-sinA)(1+sinA)=(secA-tanA)2
In (1-sinA)(1+sinA)=(secA-tanA)2,
L.H.S=1-sinA1+sinA
By rationalising the denominator we get,
⇒1-sinA1+sinA×1-sinA1-sinA
⇒1-sinA212-sin2A…………………………..a+ba-b=a2-b2
⇒1-sinA21-sin2A
⇒1-sinA2cos2A………………….1-sin2A=cos2A
⇒1-sinAcosA2
⇒1cosA-sinAcosA2
⇒secA-tanA2…………………….1cosθ=secθ,sinθcosθ=tanθ
=R.H.S.
Hence, it is proved that (1-sinA)(1+sinA)=(secA-tanA)2.
PROVE THAT: 1+secA/secA=sin2A/1-cosA