Prove that:
1. √sec2A+cosec2A = tanA + cotA
2. sin2A(1+cot2A)+cos2A(1+tan2A) = 2
1. LHS = √1+tan2A+1+cot2A
= √tan2A+cot2A+2 = √tan2A+cot2A+tanA.cotA
= √(tanA+cotA)2 = tanA + cotA = R.H.S
2. L.H.S = sin2A(1+cot2A)+cos2A(1+tan2A) = sin2A+cos2A + cos2A+sin2A = 2