1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Sign of Trigonometric Ratios in Different Quadrants
Prove that : ...
Question
Prove that :
(
1
+
tan
θ
+
sec
θ
)
(
1
+
cot
θ
−
cosec
θ
)
=
2
.
Open in App
Solution
(
1
+
tan
θ
+
sec
θ
)
(
1
+
cot
θ
−
cosec
θ
)
=
(
1
+
sin
θ
cos
θ
+
1
cos
θ
)
.
(
1
+
cos
θ
sin
θ
−
1
sin
θ
)
=
(
cos
θ
+
sin
θ
+
1
cos
θ
)
.
(
sin
θ
+
cos
θ
−
1
sin
θ
)
=
(
sin
θ
+
cos
θ
)
2
−
1
sin
θ
cos
θ
=
sin
2
θ
+
cos
2
θ
+
2
sin
θ
cos
θ
−
1
sin
θ
cos
θ
........ [Since
sin
2
θ
+
cos
2
θ
=
1
]
=
2
sin
θ
cos
θ
sin
θ
cos
θ
=
2
Suggest Corrections
0
Similar questions
Q.
Prove that :
(
1
+
cot
θ
−
csc
θ
)
(
1
+
tan
θ
+
sec
θ
)
=
2
Q.
Prove that :
(
1
+
c
o
t
θ
−
c
o
s
e
c
θ
)
(
1
+
t
a
n
θ
+
s
e
c
θ
)
=
2
Q.
Prove:
(
1
+
tan
θ
+
sec
θ
)
(
1
+
cos
θ
−
csc
θ
)
=
2
Q.
Prove that
tan
θ
1
−
cot
θ
+
cot
θ
1
−
tan
θ
=
1
+
sec
θ
c
o
s
e
c
θ
Q.
Prove the following trigonometric identities.
tan
θ
1
-
cot
θ
+
cot
θ
1
-
tan
θ
=
1
+
tan
θ
+
cot
θ