1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Dot Product of Two Vectors
Prove that 1...
Question
Prove that
(
1
×
2
×
5
)
+
(
2
×
3
×
7
)
+
(
3
×
4
×
9
)
+
.
.
.
.
.
.
∞
i
s
n
(
n
+
1
)
(
n
+
2
)
(
3
n
+
7
)
6
.
Open in App
Solution
Given
(
1
×
2
×
5
)
+
(
2
×
5
×
7
)
+
(
3
×
4
×
9
)
+
.
.
.
.
.
.
∞
=
n
(
n
+
1
)
(
n
+
2
)
(
3
n
+
7
)
6
take
n
=
1
LHS:
=
1
×
2
×
5
=
10
RHS:
=
1
(
1
+
1
)
(
1
+
2
)
(
3
(
1
)
+
7
)
6
=
6
×
10
6
=
10
LHS=RHS
take
n
=
k
LHS:
(
1
×
2
×
5
)
+
(
2
×
5
×
7
)
+
(
3
×
4
×
9
)
+
.
.
.
.
.
.
∞
RHS:
=
k
(
k
+
1
)
(
k
+
2
)
(
3
k
+
7
)
6
LHS=RHS
Now to prove that
n
=
k
+
1
is also true
LHS:
(
1
×
2
×
5
)
+
(
2
×
5
×
7
)
+
(
3
×
4
×
9
)
+
.
.
.
.
.
.
∞
RHS:
=
(
k
+
1
)
(
(
k
+
1
)
+
1
)
(
(
k
+
1
)
+
2
)
(
3
(
k
+
1
)
+
7
)
6
=
(
k
+
1
)
(
k
+
2
)
(
(
k
+
3
)
(
3
k
+
10
)
6
=
n
(
n
+
1
)
(
n
+
2
)
(
3
n
+
7
)
6
where
n
=
k
+
1
Therefore
(
1
×
2
×
5
)
+
(
2
×
5
×
7
)
+
(
3
×
4
×
9
)
+
.
.
.
.
.
.
∞
=
n
(
n
+
1
)
(
n
+
2
)
(
3
n
+
7
)
6
Hence proved by induction
Suggest Corrections
0
Similar questions
Q.
Prove that
(
1
×
2
×
5
)
+
(
2
×
3
×
7
)
+
(
3
×
4
×
9
)
+
.
.
.
.
.
is
n
(
n
+
1
)
(
n
+
2
)
(
3
n
+
7
)
6
Q.
Prove that :
(
1
×
2
×
5
)
+
(
2
×
3
×
7
)
+
(
3
×
4
×
9
)
+
.
.
.
.
.
(
n
t
e
r
m
s
)
is equal to
n
(
n
+
1
)
(
n
+
2
)
(
3
n
+
7
)
6
.
Q.
Prove that :
1
√
2
+
1
+
1
√
3
+
√
2
+
1
√
4
+
√
3
+
1
√
5
+
√
4
+
1
√
6
+
√
5
+
1
√
7
+
√
6
+
1
√
8
+
√
7
+
1
√
9
+
√
8
=
2
Q.
If U = {1, 2, 3, 4, 5, 6, 7, 8, 9} and A = {1, 2, 3, 4}, B = {2, 4, 6, 8}, C = {3, 4, 5, 6} then prove the following :
A' = {5, 6, 7, 8, 9}
Q.
Let set U = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, set A = {2, 4, 6, 8}, and set B = {1, 3, 5, 7, 9}. Prove that (A
∩
B)’ = A’
∪
B.’
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Dot Product
MATHEMATICS
Watch in App
Explore more
Dot Product of Two Vectors
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app