Let P (n): (1+x)n≥(1+nx), for x > −1
For n = 1,
L.H.S = (1+x)1 = (1 + x)
R.H.S = (1 + 1.x) = (1 + x)
L.H.S ≥ R.H.S,
R.H.S,
∴ P(n) is true for n = 1
Assume P(k) is true
(1+x)k≥(1+kx), x>−1 . . . .(1)
We will prove that P(k+1) is true.
L.H.S=(1+x)k+1
R.H.S = (1 + (k + 1)x)
L.H.SR.H.S(1+x)k+1(1+(k+1)x)=(1+x)k (1+x)1=(1+kx+x)Using (1): (1+x)k ≥ (1+kx) ≥ (1+kx)(1+x)≥ (1(1+x)+kx(1+x))≥ (1+x+kx+kx2)≥ (1+x+kx)+(kx2)k is a natural number and x2≥ 0 so that kx2≥ 0.≥ (1+x+kx)
L.H.S ≥ R.H.S
∴ P(k + 1) is true whenever P(k) is true.
∴ By the principle of mathematical induction, P(n) is true for n, where n is a natural number.