1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Standard Limits to Remove Indeterminate Form
Prove that :1...
Question
Prove that :
1
1
+
p
1
+
p
+
q
2
3
+
2
p
4
+
3
p
+
2
q
3
6
+
3
p
10
+
6
p
+
3
q
=
1
Open in App
Solution
Let
LHS
=
Δ
=
1
1
+
p
1
+
p
+
q
2
3
+
2
p
4
+
3
p
+
2
q
3
6
+
3
p
10
+
6
p
+
3
q
=
1
1
1
+
p
2
3
4
+
3
p
3
6
10
+
6
p
+
1
p
q
2
2
p
2
q
3
3
p
3
q
=
1
1
1
2
3
4
3
6
10
+
1
1
p
2
3
3
p
3
6
6
p
+
pq
1
1
1
2
2
2
3
3
3
Taking
out
p
q
common
from
last
determinant
=
1
1
1
2
3
4
3
6
10
+
p
1
1
1
2
3
3
3
6
6
+
0
Taking
out
p
common
from
second
determinant
=
1
1
1
2
3
4
3
6
10
+
0
∵
Value
of
determinant
with
two
identical
columns
is
zero
=
1
0
0
2
1
2
3
3
7
Applying
C
2
→
C
2
-
C
1
and
C
3
→
C
3
-
C
1
=
1
×
1
2
3
7
Expanding
along
R
1
=
7
-
6
=
1
=
RHS
Suggest Corrections
0
Similar questions
Q.
The value of
∣
∣ ∣
∣
1
1
+
p
1
+
p
+
q
2
3
+
2
p
4
+
3
p
+
2
q
3
6
+
3
p
10
+
6
p
+
3
q
∣
∣ ∣
∣
is:
Q.
Using properties of determinants, prove that: