Given, a2+b2+c2−ab−bc−ca
Multiply and divide by 2
=22×(a2+b2+c2−ab−bc−ca)
=2a2+2b2+2c2−2ab−2bc−2ca2
=a2+a2+b2+b2+c2+c2−2ab−2bc−2ca2
=a2−2ab+b2+b2−2bc+c2+c2−2ca+a22
=(a−b)2+(b−c)2+(c−a)22
Square of a number is always greater than or equal to zero.
(a−b)2+(b−c)2+(c−a)2=0, when a=b=c
Hence, a2+b2+c2−ab−bc−ca is always non- negative.