wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that : 2sec2θsec4θcosec2θcosec4θ=cot4θtan4θ

Open in App
Solution

Consider LHS
2sec2θsec4θ2csc2θ+csc4θ

=2sec2θ2csc2θsec4θ+csc4θ

=2(sec2θcsc2θ)(sec4θcsc4θ)

=2(sec2θcsc2θ)(sec2θcsc2θ)(sec2θ+csc2θ)

=(sec2θcsc2θ)[2(1+tan2θ+1+cot2θ)]

=(1+tan2θ1cot2θ)[2(2+tan2θ+cot2θ)]

=(tan2θcot2θ)[22tan2θcot2θ]

=(tan2θcot2θ)[(tan2θ+cot2θ)]

=(cot2θtan2θ)(cot2θ+tan2θ)

=cot4θtan4θ

=RHS

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction
PHYSICS
Watch in App
Join BYJU'S Learning Program
CrossIcon