wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that: 2sin23π4+2cos2π4+2sec2π3=10

Open in App
Solution

L.H.S=2sin23π4+2cos2π4+2sec2π3
=2[sin(ππ4)]2+2cos2π4+2sec2π3
=2sin2π4+2cos2π4+2sec2π3
=2(12)2+2(12)2+2(2)2
=2[12+12+4]
=2(5)=10=R.H.S.

So, L.H.S.=R.H.S.
2sin23π4+2cos2π4+2sec2π3=10
Hence proved

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon