1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Domain and Range of Trigonometric Ratios
Prove that ...
Question
Prove that
2
(
sin
6
θ
+
cos
6
θ
)
−
3
(
sin
4
θ
+
cos
4
θ
)
+
1
=
0
.
Open in App
Solution
L
H
S
=
2
(
sin
6
θ
+
cos
6
θ
)
−
3
(
sin
4
θ
+
cos
4
θ
)
+
1
=
2
{
(
sin
2
θ
+
cos
2
θ
)
3
−
3
sin
2
θ
cos
2
θ
(
sin
2
θ
+
cos
2
θ
)
}
−
3
(
sin
2
θ
+
cos
2
θ
)
2
−
2
(
sin
2
θ
cos
2
θ
)
}
+
1
We know,
[
s
i
n
²
x
+
c
o
s
²
x
=
1
]
=
2
{
1
−
3
sin
2
θ
cos
2
θ
}
−
3
{
1
−
2
sin
2
θ
cos
2
θ
}
+
1
=
2
−
6
sin
2
θ
cos
2
θ
−
3
+
6
sin
2
θ
cos
2
θ
+
1
=
0
=
R
H
S
Suggest Corrections
0
Similar questions
Q.
Prove the following identities
2
(
s
i
n
6
θ
+
c
o
s
6
θ
)
−
3
(
s
i
n
4
θ
+
c
o
s
4
θ
)
+
1
=
0
Q.
Write the value of 2 (sin
6
θ + cos
6
θ) −3 (sin
4
θ + cos
4
θ) + 1.
Q.
2
(
s
i
n
6
θ
+
c
o
s
6
θ
)
−
3
(
s
i
n
4
θ
+
c
o
s
4
θ
)
is equal to _____.
Q.
Use the suitable identity and simplify the given expression.
2
(
s
i
n
6
θ
+
c
o
s
6
θ
)
−
3
(
s
i
n
4
θ
+
c
o
s
4
θ
)
+
1
Q.
2 (sin
6
θ + cos
6
θ) − 3 (sin
4
θ + cos
4
θ) is equal to
(a) 0
(b) 1
(c) −1
(d) None of these