(2√3+3)sinθ+2√3cosθ
assume a=2√3+3,b=2√3
√a2+b2=√12+9+12√3+12=√33+12√3
Dividing and multiplying the above equation with above value we get,
√33+12√3(2√3+3√33+12√3sinθ+2√3√33+12√3cosθ)
Assume tanϕ=ab,
We have sinϕ=a√a2+b2.cosϕ=b√a2+b2
So above expression changes to √33+12√3(sinϕsinθ+cosϕcostheta)
which is equal to √33+12√3cos(θ−ϕ)
We know that maximum and minimum value of any cosine term is +1 and -1
√33+12√3=√15+12+6+12√3
We know that 12√3+6<12√5 because value of √5−√3 is more than 0.5
so if we replace 12√3+6 with 12√5 the above inequality still holds
So range of above expression can be √15+12+12√5=2√3+√15
−(2√3+√15)<√33+12√3cos(θ−ϕ)<2√3+√15