wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that

2tan112+tan117=tan13117

Open in App
Solution

Consider L.H.S=2tan1(12)+tan1(17)

We know that,
2tan1A=tan1(2A1A2)

=tan1⎜ ⎜ ⎜ ⎜ ⎜2×121(12))2⎟ ⎟ ⎟ ⎟ ⎟+tan1(17)

=tan1⎜ ⎜ ⎜1114⎟ ⎟ ⎟+tan1(17)

=tan1⎜ ⎜ ⎜1414⎟ ⎟ ⎟+tan1(17)

=tan1⎜ ⎜ ⎜134⎟ ⎟ ⎟+tan1(17)

=tan1(43)+tan1(17)

We know that
tan1A+tan1B=tan1(A+B1AB)

=tan1⎜ ⎜ ⎜43+17143×17⎟ ⎟ ⎟

=tan1⎜ ⎜ ⎜28+3211421⎟ ⎟ ⎟

=tan1⎜ ⎜ ⎜312121421⎟ ⎟ ⎟

=tan1(3117)=R.H.S

Hence proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Inverse Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon