wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

prove that 2tan1[tanα2tan(π4β2)]=tan1sinαcosβcosα+sinβ

Open in App
Solution

2tan1[tanα2tanπ4β2]

=2tan1[tanα2(tanπ4tanβ21+tanπ4tanβ2)]

=2tan1[tanα2(1tanβ21+tanβ2)]

=tan12tanα2(1tanβ2)1+tanβ21(2tanα2(1tanβ2)1+tanβ2)2

=tan12tanα2(1tan2β2)(1+tanβ2)2tan2α2(1tanβ22)

Convert the tanα2=sinα2cosα2&tanβ2=sinβ2cosβ2 you will get the desired value.

=tan1sinαcosβsinα+cosβ

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Inverse Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon