Prove that:
2sin23π4+2cos2π4+2sec2π3=10
We have
L.H.S = 2sin23π4+2cos2π4+2sec2π3
Now sin π4= sin (π−π4) = sin π4=1√2
∴2sin23π4+2cos2π4+2sec2π3
= 2×(1√2)2+2×(1√2)2+2×(2)2
= 2×12+2×12+2×4
= 1+ 1+ 8 = 10 = R.H.S