Prove that 2nCn=2n×[1.3.5...(2n−1)]n !.
2nCn=(2n) !(n !)(2n−1) !=(2n) !(n !)2
=(2n)(2n−1)(2n−2)...4.3.2.1(n !)2
=[(2n)(2n−2)(2n−4)...4.2]×[(2n−1)(2n−3)...5.3.1](n !)2
=2n[n(n−1)(n−2)...2.1]×[(2n−1)(2n−3)...5.3.1](n !)2
=2n×(n !)×[1.3.5...(2n−3)(2n−1)]n !
=2n×[1.3.5...(2n−3)(2n−1)](n !).
Hence, 2nCn=2n×{1×3×5×...×(2n−1)}n !.