Consider 4(sin6x+cos6x)
=4[(sin2x)3+(cos2x)3]
=4[(sin2x+cos2x)(sin4x−sin2xcos2x+cos4x)]
=4[(sin2x+cos2x)2−2sin2xcos2x−2sin2xcos2x]
=4[1−3sin2xcos2x]
=4−12sin2xcos2x ........(1)
6[sinx+cosx]2
=6[sin2x+cos2x+2sinxcosx]
=6[1+2sinxcosx]
=6+12sinxcosx ......(2)
3(sinx−cosx)4
=3[(sinx−cosx)2]2
=3[sin2x+cos2x−2sinxcosx]2
=3[1−2sinxcosx]2
=3[1−4sinxcosx+4sin2xcos2x]
=3−12sinxcosx+12sin2xcos2x .....(3)
Adding (1),(2) and (3) we get
3(sinx−cosx)4+4(sin6x+cos6x)+6[sinx+cosx]2
=3−12sinxcosx+12sin2xcos2x+4−12sin2xcos2x+6+12sinxcosx
=13
Hence proved