prove that:
(x+y)n=nc0xn+nc1xn−1y+nc2xn−2y2+..+ncnyn
Now lets solve the given expansion,
Alternate method:
Lets take LHS and then equate it to RHS.
LHS =(3x+7)2−(3x−7)2
=(3x+7+3x−7)(3x+7−3x−7) [∵(a2−b2=(a+b)(a−b)]
=(6x)(14)
=84x
= RHS
Hence, (3x+7)2−(3x−7)2=84x proved.