Prove that 4 cos 12∘ cos 48∘ cos 72∘=1−2 sin2 18∘.
We have ,
LHS=4 cos 12∘ cos 48∘ cos 72∘
=2(2 cos 12∘ cos 48∘)cos 72∘
=2[cos(12∘+48∘)+cos(12∘−48∘)]cos 72∘
[∵2cos A cos B =cos(A+B)+cos(A−B)]
=2(cos 60∘+cos 36∘)cos 72∘
=2 cos 60∘ cos 72∘+2 cos 36∘ cos 72∘
=2×12 cos 72∘+cos(36∘+72∘)+cos(72∘−36∘)
[∵2 cos A B=cos(A+B)+cos(A−B)]
=cos 72∘cos 108∘+cos 36∘
=cos 72∘+cos(180∘−cos 36∘
=cos 72∘−cos 72∘+cos 36∘
=cos 36∘
=cos 2×18∘
=1−2sin2 18∘=RHS Hence Proved.