wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that 4 cos θ cosπ3+θ cos π3-θ=cos 3θ.

Open in App
Solution

LHS = 4cos θ cos π3 + θ cos π3 - θ= 2cos θ2 cos π3 + θ cos π3 - θ= 2cos θcos π3 + θ + π3 - θ + cos π3 + θ - π3 + 2θ 2cos A cos B = cos (A + B) + cos (A - B)= 2cos θcos 2π3 + cos 2θ= 2cos θ-12 + cos 2θ= -cos θ + 2cos θ cos 2θ= -cos θ + cos θ + 2θ + cos θ - 2θ= -cos θ + cos 3θ + cos-θ= -cos θ + cos 3θ + cos θ= cos 3θRHS = cos 3θHence, LHS = RHS

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios of Allied Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon