Prove that:
4cosθ(π3+θ) cos (π3−θ)=cos3θ
We have,
LHS=4cosθ cos(π3+θ) cos (π3−θ)=2cosθ[2cos(π3+θ) cos (π3−θ)]=2cosθ[2cos(π3+θ+π3−θ)+cos(π3+θ−π3+θ)]=2cosθ[cos2π3+cos2θ]=2cosθ[cos(π2+π6)+cos2θ]=2cosθ[−sinπ6+cos2θ]=cosθ[−12+cos2θ]=−2cosθ12+2cosθ cos2θ=−cosθ+[cos(θ+2θ)+cos(2θ−θ)]=−cosθ+cos3θ+cosθ=cos3θ=RHS
∴ LHS=RHS.