1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Physics
Introduction
Prove that: 4...
Question
Prove that:
4
cos
3
10
°
+
sin
3
20
°
=
3
cos
10
°
+
sin
20
°
Open in App
Solution
We
know
,
sin
60
°
=
cos
30
°
=
3
2
⇒
sin
3
×
20
°
=
cos
3
×
10
°
⇒
3
sin
20
°
-
4
sin
3
20
°
=
4
cos
3
10
°
-
3
cos
10
°
∵
sin
3
θ
=
3
sinθ
-
4
sin
3
θ
and
cos
3
θ
=
4
cos
3
θ
-
3
cosθ
⇒
4
cos
3
10
+
sin
3
20
°
=
3
cos
10
°
+
sin
20
°
Hence
proved
.
Suggest Corrections
0
Similar questions
Q.
Prove that following identities:
4
(
c
o
s
3
10
∘
+
s
i
n
3
20
∘
)
=
3
(
c
o
s
10
∘
+
s
i
n
20
∘
)
Q.
If LHS is
=
4
(
cos
3
(
10
°
)
+
sin
3
(
20
°
)
)
, then RHS will be.