Prove that : 4nC2n:2nCn=[1.3.5...(4n−1)]:[1.3.5....(2n−1)]2.
4n!(2n)!(2n)!2n!n!n!(∵nCr=n!r!(n−r)!)=(4n!)×(n!)2(2n!)(2n!)×(2n!)2=[1.2.3.4...(4n−1)(4n)](n!2)(2n)![1.2.3.4....(2n−2)(2n−1)(2n)]2=[1.3.5....(4n−1)]×[2.4.6...4n]×(n!)2(2n)![1.3.5...(2n−1)]2×[2.4.6....(2n−2)(2n)]2=[1.3.5...(4n−1)]×22n×[1.2.3...2n]×n!2(2n)!×[1.3.5...(2n−1)2×22n×n!2]=[1.3.5...(4n−1)][1.3.5...(2n−1)]2
Hence proved.