2h!n!=2n(2n−1)(2n−2)………...3.2)n!
=(2.4.6.....(2n−2)(2n))(1.3.5.....(2n+1)n!
2n!n!=2n(1.2.3...…..(n−1)n)(1.3.5.....(2n+1)n!
2n!n!=2nn!(1.3.5.....(2n−1)n!=2n(1.3.5....(2n+1)) ………(1)
Replacing n by 2n
4n!2n!=22n(1.3.5....(4n−1)) ………..(2)
Now the given ratio can be written as
4nCn|2nCn=4n!2n!2n!×n!n!2n!
4nC2n|2nCn=4n!2n!×(n!2n!)2
Now using (1) and (2)
4nCn2nCn=22n(1.3.5...…(4n−1))22n(1.3.5.....(2n−1))2
4nCn2nCn=(1.3.5.....(4n−1))(1.3.5.....(2n−1))2.