Consider the left hand side (LHS),
LHS= ( sin7x+sin5x )+( sin9x+sin3x ) ( cos7x+cos5x )+( cos9x+cos3x ) = [ 2sin( 7x+5x 2 )cos( 7x−5x 2 ) ]+[ 2sin( 9x+3x 2 )cos( 9x−3x 2 ) ] [ 2cos( 7x+5x 2 )cos( 7x−5x 2 ) ]+[ 2cos( 9x+3x 2 )cos( 9x−3x 2 ) ] = ( 2sin6xcosx )+( 2sin6xcos3x ) ( 2cos6xcosx )+( 2cos6xcosx ) = 2sin6x( cosx+cos3x ) 2cos6x( cosx+cos3x )
Further simplify,
=tan6x
Right hand side (RHS),
RHS=tan6x
Since, LHS=RHS
Hence, the expression has been proved.